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ABSTRACT
Role mining algorithms address an important access con-
trol problem: configuring a role-based access control sys-
tem. Given a direct assignment of users to permissions, role
mining discovers a set of roles together with an assignment
of users to roles. The results should closely agree with the
direct assignment. Moreover, the roles should be under-
standable from the business perspective in that they reflect
functional roles within the enterprise. This requires hybrid
role mining methods that work with both direct assignments
and business information from the enterprise.

In this paper, we provide statistical measures to analyze
the relevance of different kinds of business information for
defining roles. We then present an approach that incor-
porates relevant business information into a probabilistic
model with an associated algorithm for hybrid role mining.
Experiments on actual enterprise data show that our algo-
rithm yields roles that both explain the given user-permission
assignments and are meaningful from the business perspec-
tive.

Categories and Subject Descriptors: K.6 [Management
of Computing and Information Systems]: Security and Pro-
tection

General Terms: Security, Management, Algorithms

Keywords: RBAC, Role Mining, Hybrid Role Mining, Ma-
chine Learning, Business Meaning

1. INTRODUCTION
Role-Based Access Control (RBAC) [10] is an access con-

trol model used in many systems. In RBAC, rather than
assigning permissions directly to users, one introduces a set
of roles and defines two relations: a user-role relation that
assigns users to roles and a role-permission relation that as-
signs roles to permissions. This decomposition facilitates
the administration of authorization policies since roles are
(or should be) natural abstractions of functional roles within

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

an enterprise and the two relations are conceptually easier to
work with than a direct assignment of users to permissions.

Despite the many advantages of RBAC, it is surprisingly
difficult to configure and maintain an RBAC system for large
enterprises. This task, called role engineering [6], can be ap-
proached from two different directions, top-down or bottom-
up, each with its own strengths and weaknesses.

Top-down role engineering [9, 15] starts by analyzing an
enterprise’s business structure. This structure includes busi-
ness information such as the organizational hierarchy, em-
ployees’ job descriptions, or their workplace. This informa-
tion is used to determine the permissions that users should
have and to bundle these permissions into roles. The result-
ing roles are easy to understand from the business perspec-
tive as they are derived from business concepts. However,
the business information alone is unlikely to contain enough
information to derive an RBAC configuration that closely
corresponds to the existing direct assignment of users to per-
missions, i.e., the authorizations may change considerably.

In contrast, bottom-up approaches start with the direct
assignment of users to permissions available, for instance,
as access-control lists. One then analyzes these assignments
for patterns, attempting to capture the underlying structure
with roles and an assignment of users to roles. This analy-
sis can be automated using data mining algorithms and is
called role mining. Interestingly, top-down approaches com-
plement bottom-up methods in terms of their strengths and
weaknesses. Role mining algorithms often achieve a good
fit with the existing user-permission assignments but they
discover roles that are difficult to interpret from a business
perspective and that are cumbersome for administrators to
work with, e.g., to maintain the RBAC configuration as the
enterprise evolves.

In this paper, we propose an approach for hybrid role min-
ing that incorporates top-down business information into a
bottom-up role-mining process and thereby combines the
strengths of both approaches. Our method has two parts,
with associated measures, models, and algorithms.

1. Identify business information and determine its rel-
evance for roles with respect to the existing access-
control data.

2. Incorporate the relevant data into the role mining pro-
cess itself.

In the first part, we begin by identifying business infor-
mation that could be relevant for roles. Since roles should
represent functions within an enterprise, the enterprise’s Hu-
man Relations department is likely to be a good source of



such data, e.g., employees’ positions, working groups, loca-
tions, etc. But not all such data is equally relevant. Indeed,
there is unlikely to be any business information that pre-
cisely captures the roles of all system users. For example,
employees with the same position (group or location) usually
differ in some of their permissions. Moreover, simply using
all available data is not the solution: It not only increases
the computational cost of hybrid role mining, it can actually
lead to worse results, as we will see later (Section 4). Hence
it is necessary to select the most relevant business informa-
tion for use in hybrid role mining. To support this selection,
we define an appropriate entropy-based notion of relevance
and show how to compute it.

In the second part, we present a method to incorporate
business information into a role mining algorithm based on
a probabilistic model of an RBAC system. Our probabilistic
model encodes how likely it is that a particular role decom-
position underlies a given user-permission assignment. We
combine this model with an objective function on business
information that optimizes business relevance: users with
the same business attribute should ideally be assigned to
the same set of roles.

Our contribution is as follows. First, we develop a method
for quantitatively analyzing any kind of business informa-
tion, establishing a formal notion of relevance that can be
used with any hybrid role mining algorithm. This is the
first such method proposed for tackling the data selection
problem in hybrid role mining. Second, we present a hybrid
role mining method based on the combination of a sound
statistical model with an objective function that accounts
for business information. Through experiments, we demon-
strate that our hybrid role mining method finds roles that
both generalize well and correspond to the business infor-
mation at hand. Finally, we provide two quantitative mea-
sures to objectively assess the results of role mining meth-
ods: a generalization test and an entropy-based measure of
the business relevance of an RBAC system. These measures
are general in that they can be used to assess the results
returned by any role-mining approach.

The remainder of the paper is organized as follows. In
Section 2, we examine related work in role mining. Af-
terwards, in Section 3, we introduce background concepts
before explaining our relevance measure in Section 4. In
Section 5, we develop our model for hybrid role mining and
the corresponding algorithm. We report on experimental
results obtained with data from a real-world enterprise in
Section 6. Finally, we draw conclusions in Section 7.

2. RELATED WORK
The term role mining was coined by [13] in 2003. Since

then, a number of different bottom-up approaches have been
presented, e.g., [3, 11, 19, 20, 22, 23]. In [21], the role min-
ing problem and some of its variants were defined. Almost
all previous approaches are combinatorial, based on different
ways of searching through possible roles. Exceptions are [11,
20], which proposed a probabilistic model for RBAC where
bottom-up role mining is recast as the problem of finding
the most likely roles underlying a given user-permission as-
signment relation. This approach has the feature that role
mining can be used not only to discover roles, but also to
detect exceptional assignments (e.g., assignments needed for
a “special operation”) or even wrong assignments. Follow-
ing this idea, our approach is also based on a probabilistic

model, and, as in [20], we explicitly model the processes
leading to exceptional assignments and wrong assignments.
More importantly, we provide a way to combine our model
with top-down business information.

Several approaches have been previously proposed for top-
down role engineering, all of which are manual. [17] pro-
posed a method to derive roles by analyzing business pro-
cesses and carried out a case-study on one enterprise as a
proof of principle. Similarly, [15] presented an approach
based on analyzing business scenarios to find appropriate
user-role and role-permission assignments. Both approaches
are time consuming for large companies as they require hu-
mans to reason about the business processes or scenarios in
the enterprise. Organizational theory is used to define cri-
teria for creating roles in [7]. The criteria are based on a
user’s position in the enterprise hierarchy, his job function,
and the resources he requires for his work. As we demon-
strate in this paper, these types of business information can
also be used for automated role engineering.

To the best of our knowledge, there are only two other
approaches to hybrid role mining. In [14], a candidate set
of roles is created using an algorithm from formal concept
analysis [12]. [4] proposes a hybrid approach that extends
the bottom-up algorithm proposed in [3]. It is based on an
algorithm from [1] for association rule mining. Both of these
approaches work by creating a candidate set of roles based
solely on bottom-up data and afterwards using the business
information in a post-processing step to select roles in a
greedy fashion. In contrast, our algorithm uses business in-
formation during the role-creation step. We thereby explore
more of the solution space and find solutions that cannot
be reached using a preprocessed set of candidate roles. An-
other difference is that, in contrast to our approach, [14,
4] both lack a probabilistic model whose parameters are to
be optimized. The outcome is thus determined by design
decisions made for the combinatorial post-processing steps.
Moreover, neither approach provides a way to measure the
relevance of business information for role mining.

3. PRELIMINARIES
Following the RBAC standard [10], we will work with the

following sets in this paper:

• USERS, the set of users (or employees),

• PERMS, the set of permissions (or privileges),

• ROLES, the set of roles,

• UA ⊆ USERS × ROLES, a user-role assignment re-
lation,

• PA ⊆ ROLES × PERMS, a role-permission assign-
ment relation, and

• UPA ⊆ USERS×PERMS, a user-permission assign-
ment relation.

Let N := |USERS|, D := |PERMS|, and K := |ROLES|.
We will assume that the sets of users, permissions, and roles
all can be ordered, e.g., we will speak of the ith user, for
i ∈ {1, . . . , N}. The three relations above are all many-to-
many. For notational convenience, we encode each of them
as a binary matrix: We represent UPA as x ∈ {0, 1}N×D,



UA as z∈{0, 1}N×K , and PA as u∈{0, 1}K×D. In this rep-
resentation, xij = 1 (xij = 0) indicates that user i is (not)
assigned permission j. The representation is analogous for
zik (user i and role k) and ukj (role k and permission j).

The relation PA induces a collection of K sets of permis-
sions, namely those sets of permissions assigned to the same
role k, for each k ∈ {1, . . . , K}. As is often done in practice,
we will identify these sets with the set of roles ROLES. The
indices i, j, and k will be consistently range over USERS,
PERMS, and ROLES respectively, throughout the paper
and will often be used synonymously with the objects that
they index.

In bottom-up role mining, the user-permission assignment
matrix x is given and must be approximated with a user-role
relation z and a role-permission relation u. In the approx-
imation, the number of differing assignments ‖x − z ⊗ u‖
should be small, where a ⊗ b denotes the Boolean matrix
product, defined such that cij =

∨

k [aik ∧ bkj ]. Sometimes
we will refer to the pair (z,u) as the role decomposition of
the direct user-permission assignment x.

Enterprises maintain different types of business informa-
tion about each user. Examples include a user’s working
address, job code, organization unit, etc. We encode predi-
cates specifying which users i have the business-information
attribute s (for example, which users work in the accounting
department) as a family of Boolean variables wis. The vari-
able wis has the value of 1 if the user i has attribute s, and
0 otherwise. We shall assume that for each type of business
information, each user has a single attribute s, e.g., a user
is member of exactly one department.

Finally, we use the notation zi· to represent the ith row of
the assignment-matrix z, which encodes the roles possessed
by the user i (note that a user may have more than one role).
The same notation will be used for other matrices as well.

4. ENTROPY-BASED RELEVANCE
MEASURES

An abundance of information is usually available in digital
form within an enterprise, but most of it is ill-suited for
hybrid role mining. To be useful, the data must provide
information about the relationship between employees and
the permissions they have been granted. In this section, we
provide a measure that quantifies to what extent a given
type of business information agrees with the direct user-
permission assignment. When the agreement is high, we say
that the data is relevant because it increases the information
about whether a user has a particular permission.

Business information with too little relevance can actually
lead to worse role mining results. This deterioration occurs
when the objective of agreement between roles and business
information conflicts with the objective of finding roles that
best explain the direct user-permission assignment. This
conflict can be avoided by carefully pre-selecting the business
information. The relevance measure we provide can be used
for such a pre-selection.

For the definition of relevance, we first introduce the fol-
lowing quantities. The random variable Xj ∈ {0, 1} denotes
the assignment of permission j to a generic user. S is the
random variable that corresponds to the business attribute
of a generic user (e.g. “job code”) and let s be one of the ac-
tual values that S can take (e.g. “accountant”). Let p(xj) :=
1/N ·

∑

i xij be the empirical probability of j being assigned

to an unspecified user, and let p(xj|S = s) := 1/N ·
∑

i xijwis

be the empirical probability of j being assigned to a user
with business attribute s. The natural measure for the in-
formation of a random variable A is its entropy H(A) [5],
which in the case of a permission j is the binary entropy
h(Xj). The binary entropy, defined as

h(Xj) := −
∑

xj∈{0,1}

p(xj) log2 (p(xj)) , (1)

quantifies the missing information on whether the permis-
sion j is granted to some user. The conditional entropy

h(Xj |S) :=−
∑

s∈S

p(s)
∑

xj∈{0,1}

p(xj |S = s) log2 (p(xj |S = s))

(2)
encodes how much of the missing information h(Xj) of Xj

remains if S is known. The mutual information

I(Xj ; S) := h(Xj)− h(Xj |S) (3)

measures how much the knowledge of S increases the infor-
mation on Xj . We therefore propose the mutual information
I(Xj ; S) to measure how much the knowledge of the busi-
ness information S helps us to predict the assignment xj of
permission j to a generic user. In order to express this ab-
solute reduction of missing information in a relative way, we
define the measure of relevance ρj(S) of business informa-
tion S for permission j to be the relative mutual information
([5], p. 45)

ρj(S) :=
I(Xj ; S)

h(Xj)
= 1−

h(Xj |S)

h(Xj)
. (4)

This number can be interpreted as the fraction of all bits in
Xj that are shared with S. Alternatively, ρj(S) can be read
as the fraction missing information on permission j that is
removed by the knowledge of S.

For each kind of business information S that appears po-
tentially useful for role mining, one can now compute ρj(S)
for all permissions j and examine their distribution (e.g.
Fig. 2). The larger the overall decrease in entropy of the
permissions under the knowledge of the business informa-
tion S, the better qualified S is as a candidate for hybrid
role mining. Given different types of business information
that are expected to be helpful for role mining, one can com-
pare them and their combinations according to the proposed
measure and pick the most relevant one.

In principle, this relevance analysis can be carried out
using any kind of (digitally) available business information.
We will give examples in Section 6.1.

5. HYBRID ROLE MINING
Our goal is to infer user-role and role-permission assign-

ments based on a direct user-permission assignment matrix
and additional business information. The basic assumption
of role mining is the existence of a role structure underly-
ing the direct assignment. It is this structure that should be
discovered by a role mining algorithm. Our method searches
for the role decomposition that is most likely to explain the
direct user-permission assignment.

In Section 5.1, we explain the probabilistic model [20] un-
derlying our computations of the probabilities of different
role decompositions. Afterwards, we show how to combine
business information with this model in Section 5.2 and we



present an optimization strategy for inferring the parame-
ters of the combined model in Section 5.3.

5.1 The Likelihood of a Role Decomposition
Our model has two parts: a structured and an unstruc-

tured part. The structured part pS(·) represents the role
structure, i.e., the entries of the user-permission matrix x
that can be explained by the matrix decomposition x =
z ⊗ u. Computing this decomposition with minimal error
was shown to be NP-hard in [21]. We solve a polynomial
variant of the problem by optimizing the (soft) probabilities
βkj := P (ukj = 0) that the role k does not contain per-
mission j, instead of the (hard) assignments ukj . β denotes
the full K ×D-matrix of these probabilities. Upon conver-
gence of the optimization algorithm, the βkj are very close
to either 0 or 1. Formally, the probability that user i who is
assigned to roles zi· has permission j under the structured
part is

pS (xij | zi·, β)=

(

1−
K
∏

k=1

βzik

kj

)xij
(

K
∏

k=1

βzik

kj

)1−xij

, (5)

where zik is the hard (non-probabilistic) binary assignment
of user i to role k. As explained above, the goal of role min-
ing is to determine the parameters β and z. Since a users’
roles are combined using Boolean disjunction, the probabil-
ity of not having a permission decreases as the number of
roles that are likely to contain this permission increases.

The unstructured part pU (·) represents all elements of
the user-permission matrix that cannot be explained with
the detected role structure. It comprises namely the per-
missions a user gets exceptionally (e.g., for “special tasks”)
and the mistakes made when originally specifying the user-
permission matrix. As we assume exceptional assignments
as well as errors to be uniformly distributed over all users
and permissions, we model the probability p (xij | r) for the
user i to have the permission j by a global Bernoulli process
with parameter r:

pU (xij | r) = rxij (1− r)1−xij . (6)

This process allows a user to have a permission without get-
ting it from the structured part pS. Technically, this part of
the model allows one to explain the predominant structure
of the data without letting exceptional or erroneous permis-
sion assignments influence the roles. Exceptions can then
be automatically reported and manually checked for errors.

Let ǫ be the probability that an assignment xij is gener-
ated by the unstructured part of the model pU . Then the
full model pM gives the likelihood

pM (xij |zi·, β, r, ǫ) = ǫ pU (xij |r) + (1−ǫ) pS(xij |zi·, β) . (7)

For a more convenient notation, we introduce the notion of
a role set Li, which contains the indices of all roles that the
user i belongs to, i.e. Li := {k ∈ {1, . . . , K} | zik = 1}. Li

is an alternative representation of the row zi·. The set of all
possible role sets is denoted by L. With this notation, the
likelihood (7) becomes

pM (xij |Li, β, r, ǫ) = ǫpU(xij |r) + (1− ǫ)pS(xij |Li, β) . (8)

Assuming that different elements of the user-permission ma-
trix x are independent of each other given the parameters β

and z, the total probability is given as

pM (x|z, β, r, ǫ) =
∏

i,j

pM (xij | Li, β, r, ǫ) . (9)

The unknown model parameters that must be inferred are
thus the user-role assignment z, the roles expressed in terms
of their probabilities β of not containing particular permis-
sions, the global noise probability ǫ, and the probability r
of exceptionally getting a permission. These parameters
will be chosen to maximize the likelihood of the observed
data. While direct maximization of (9) is computationally
demanding, its logarithm is easier to handle (when taking
derivatives) and attains the maximum at the same param-
eter values. We therefore define the bottom-up costs of as-
signing a given user i to a set of roles L as the negative
logarithm of the likelihood function (8):

R
(ll)
i,L = − log

(

∏

j

pM (xij | L, β, r, ǫ)

)

= −
∑

j

log (ǫ · pU (xij) + (1−ǫ) · pS(xij |L, β)) . (10)

The costs R(ll) for all users are then

R(ll) =
∑

i,L

ziLR
(ll)
i,L , (11)

with ziL ∈ {0, 1} indicating the assignment of i to the set of
roles L.

5.2 Incorporating Business Information

Business Information and Likelihood
Optimizing the model parameters with respect to the log-
likelihood (11) seeks to find roles and user-role assignments
that best explain the given direct-assignment data. Since
many different user-role and role-permission assignments can
equip the users with their permissions, there are many role
configurations with very similar likelihood. Technically speak-
ing, the solution space for a solution with maximum like-
lihood has many local optima with similar values for the
objective function. However, many of these local optima
represent RBAC configurations that are unintuitive from a
business perspective. A hybrid role mining algorithm that
combines the likelihood with business information will find
solutions that are more meaningful.

More formally, incorporating business information leads
to an optimization problem with two objectives.

1. The role decomposition (z,u) should accurately ap-
proximate a user-permission matrix, both for the cur-
rent users and for new users.

2. The role assignments should agree with the business
information.

These two objectives are weighted and combined to a uni-
fied objective function. The weighting allows us to choose
the influence of each of the two sub-objectives. Note that if
these sub-objectives conflict, the solutions of the joint objec-
tive will not be a solution of the single objectives. However,
as we will show later (e.g. see Figure 3), the business mean-
ing of a role decomposition can be substantially increased
without significantly increasing the bottom-up costs (11).



As mentioned above, this behavior is caused by the fact
that many configurations exist with similarly low bottom-
up costs (i.e. similarly high likelihood) but differing degrees
of business interpretability.

In the following, we will introduce a cost function R(S) for
business information S, reflecting the above assumption. We
then define a unified objective function as a linear combina-
tion of the business information costs and the log-likelihood
costs (11):

R = R(ll)/D + λR(S) , (12)

where λ ≥ 0 is the mixing parameter, weighting the influence
of the business information. A weighted linear combination
is the easiest way to merge the two cost functions into a
single one, and allows a smooth transition from a scenario
without business information (λ = 0) to one that is com-
pletely determined by the business information (λ → ∞).
The term 1/D makes the log-likelihood costs independent
of the number of permissions D. This makes it easier to
compare with the permission-independent term R(S), which
we subsequently give in (13), for arbitrary sized systems.

Objective Function for Business Information
Setting up requirements for a role decomposition from the
business information perspective is probably the most cru-
cial step in designing a hybrid role-mining technique. Our
goal is to make the role decomposition as meaningful as pos-
sible from the business perspective. This perspective is rep-
resented by the business information at hand which could
denote, for instance, organizational units or contract types.

Our assumption about the relationship between business
information and permissions is as follows: The business in-
formation abstractly describes what users should be able to
do. This assumption implies that two users with the same
business attributes will have essentially the same tasks within
the company. This assumption, together with the principle
of least privileges, which states that users should only have
the permissions required for their tasks, therefore implies
that users with the same business attributes should have
similar permissions. Furthermore, note that only the entire
set of roles assigned to a user determines his permissions.
Hence, to evaluate if two users of the same business attribute
have similar permissions, one must compute a measure of
similarity based on their full role sets.

Summing up the above considerations, we assume that
a role decomposition is meaningful if employees satisfying
identical business predicates (i.e., having the same business
information attributes) are also assigned to a similar (ideally
the same) set of roles.

Note that this design decision is different from requiring
that all users with identical roles have similar business at-
tributes, as proposed in [4]. We advocate our approach for
two reasons: First, it favors solutions where knowledge of
the business attributes determines the roles, while the other
approach leads to solutions where the roles determine the
business attributes. In practice, one usually seeks the assign-
ment of roles and knows the business information. Second,
most enterprises have some permissions that are granted to
almost all users, such as reading email. Our objective avoids
an unnecessarily high number of roles by allowing roles cap-
turing such permissions to be shared among users with dif-
ferent business attributes (e.g. across organizational units).

Given the above considerations, we propose an objective
function that compares all pairs of users (i, i′) having the
business attribute s with respect to their role assignments
(zi·, zi′·). Using the Boolean variable wis∈{0, 1} to encode
whether user i has business attribute s (wis = 1) or not
(wis = 0), the total costs of a role assignment z are given as

R(S) =
1

N

∑

s

∑

i,i′

wiswi′s

∑

k

zi′k (1− 2zi′kzik) . (13)

N is the total number of users and k ∈ {1, .., K} is the
role index. Each user has a single business attribute s,
i.e.

∑

s wis = 1, but can be assigned to multiple roles,
1 ≤

∑

k zik ≤ K. The term
∑

k zi′k (1− 2zi′kzik) in (13)
computes the agreement between the binary assignment vec-
tors (zi·, zi′·) for all pairs of users (i, i′) having the same
attribute s (which is the case iff wiswi′s = 1). The sub-
term (1− 2zi′kzik) switches the sign of a single term such
that agreements (zikzi′k = 1) are rewarded and differences
(zikzi′k = 0) are penalized.1

For notational convenience, let Nsk :=
∑

i zikwis be the
number of users that have the business attribute s and are
assigned to role k, and let si be the attribute of user i. With
these auxiliary variables, we simplify the above expression
as follows.

R(S) =
1

N

∑

s,i

wis

∑

k

(Nsk − 2zikNsk)

=
1

N

∑

i

∑

k

(Nsik − 2zikNsik)

=
∑

i,k

(1− zik)
Nsik

N
−
∑

i,k

zik
Nsik

N
(14)

This formulation of the costs is more intuitive: a user i has a
business attribute si and Nsik is the number of users having
the same attribute that are assigned to role k. User i should
be assigned to k if Nsik is high. The first term in (14)
penalizes role decompositions not assigning i to such roles
(zik = 0). The second term rewards solutions with such
assignments (zik = 1).

We would like to directly compare this function with the

costs R
(ll)
i,L of assigning a given user i to a set of roles L.

We therefore restate the above expression by substituting
zik by the assignments ziL from user i to the set of roles
L and the assignments zLk from role sets to roles. Then,
zik =

∑

L ziLzLk, and therefore

R(S) =
∑

i,k

((

1−
∑

L

ziLzLk

)

Nsik

N
−
∑

L

ziLzLk
Nsik

N

)

=
∑

i,L

ziL

(

∑

k

Nsik

N
−
∑

k

zLk
Nsik

N
−
∑

k

zLk
Nsik

N

)

=
∑

i,L

ziL

(

∑

k/∈L

Nsik

N
−
∑

k∈L

Nsik

N

)

(15)

=
∑

i,L

ziLR
(S)
i,L .

1An alternative to (13) would be to compute the Hamming
distance between the two assignment vectors. However, this
has the drawback of penalizing pairs with differently sized
role sets.



In the second line we made use of the fact that a user is only
assigned to a single set of roles L.

Given the top-down objective function in this form, we
can directly compare it with the log-likelihood costs given
by (10).

5.3 Inference Algorithm
We use Deterministic Annealing (DA) [2, 18], an iterative

gradient-descent optimization method, to infer the model
parameters. In the following, we explain how we compute
the objective function derived above in such an iterative set-
ting. Afterwards, we briefly describe this iterative optimiza-
tion scheme and explain how, in each DA-step, we update
the parameters to be optimized in our particular problem.

Computation of R
(S)
i,L .

Given an iterative optimization scheme for minimizing an
objective function R(S), one faces a computational prob-
lem with the above quantities: compute the optimal as-
signments ziL from the Nsik, which are, in turn, computed
from the ziL themselves. To make this computation at
step t of our algorithm feasible, we use the expected as-

signments γ
(t−1)
iL := E

[

z
(t−1)
iL

]

of the previous step instead

of the Boolean z
(t)
iL to approximate N

(t)
sik by its expectation:

N
(t)
sik ≈ E

[

N
(t−1)
sik

]

=
∑

L

zLk

∑

i′

wi′si
γ

(t−1)
i′L . (16)

This so-called mean-field approximation [2] makes the com-

putation of R
(S)(t)
i,L feasible. Therewith, the costs of a user

belonging to a set of roles are

R
(S)(t)
i,L ≈

∑

k/∈L

E

[

N
(t−1)
sik

]

N
−
∑

k∈L

E

[

N
(t−1)
sik

]

N
. (17)

Deterministic Annealing.
Deterministic Annealing is a gradient-descent algorithm

for optimizing an objective function. At each step t of the
algorithm, it enables a smoothly varying trade-off between
the cost function to be optimized and the uniform distri-
bution controlled by the Lagrange parameter T . The cost
function R(·) of a problem determines the Gibbs distribution
p(·) = 1/Z exp(−R(·)/T ), where Z =

∑

{·} exp(−R(·)/T )
is the normalizing constant and the sum is over all points
in the solution space. Minimizing the Lagrangian F =
−T log(Z) = E [R]− TH at a given T is equivalent to max-
imizing the entropy H (seeking a solution close to the uni-
form distribution) while minimizing the expected costs E [R]
(seeking a minimum cost solution). For historical reasons,
T is often called the (computational) temperature. Start-
ing the optimization at a high T and successively decreasing
it, smooths the costs landscape in the beginning and helps
the gradient-based optimization procedure to avoid getting
trapped in local minima.

We choose an initial temperature and a constant rate cool-
ing scheme (T (t) = α · T (t−1), with α < 1) as described in
[18]. At each value of the temperature, we run one step of
the Expectation-Maximization (EM) algorithm [8]. First,
the expected value of the data likelihood is computed, given
the current set of parameters. Second, the parameters are
chosen such that this quantity is maximized. Finally, the

temperature is decreased and the solution of the previous
step is used to estimate the likelihood.

Parameter Estimation.
We now give the concrete expressions for our setting. To

simplify notation, we define the non-normalized responsibil-
ities of the role set L for the data item i as

ci,L := exp (−Ri,L/T ) . (18)

The normalized responsibilities γi,L (the expectation of ziL

according to the Gibbs distribution) and the Lagrangian F
are defined as follows:

γi,L :=
ci,L

∑

L′ ci,L′

(19)

F := −T
∑

i

log

(

∑

L

ci,L

)

(20)

In the expectation step, the costs of assigning user i to the
set of roles L is computed for all users and role sets accord-
ing to (10) and (17) using the estimated parameters from the
previous maximization step (computed at a higher temper-
ature). The normalized responsibilities are then computed
using Equations (18) and (19).

In the maximization step, the model parameters β, ǫ, and
r are estimated such that they minimize the Lagrangian F ,
i.e. they are updated to the values where the partial deriva-
tive of F is zero. For the probabilistic parameters β, we
get

∂F

∂βpq
= (1−ǫ)

∑

i

∑

{L∈L|p∈L}

(

f
xiq

L,q,1 ·f
1−xiq

L,q,0 ·γi,L ·βL\{p},q

)

, (21)

with βL\{p},j :=
∏

k∈L,k 6=p

βk,j

fL,q,1 :=
−1

ǫr + (1− ǫ) (1− βL,q)

fL,q,0 :=
1

ǫ (1− r) + (1− ǫ)βL,q
.

Deriving F with the weight of the unstructured part ǫ gives

∂F

∂ǫ
= −

∑

i

∑

L

γi,L

∑

j

(

g
xij

L,j,1 · g
1−xij

L,j,0

)

, (22)

with gL,j,1 :=
r − (1− βL,j)

ǫr + (1− ǫ) (1− βL,j)

gL,j,0 :=
(1− r)− βL,j

ǫ (1− r) + (1− ǫ)βL,j
.

The optimal parameter r of the unstructured part is found
with the derivative

∂F

∂r
=
∑

i,j

∑

L

γiL · h
xij

L,j,1 · h
1−xij

L,j,0 , (23)

with hL,j,1 :=
−1

ǫr + (1− ǫ) (1− βLj)

hL,j,0 :=
1

ǫ (1− r) + (1− ǫ)βLj
.

When optimizing one of the model parameters, all other
model parameters are kept fixed. Since the update equa-
tions (21)–(23) are not analytically solvable, the roots are



determined using bisection search. The optimization algo-
rithm terminates if for each user i the γi,L have converged
to 1 for a single set of roles L. The probabilistic roles β
are then rounded to get the estimated matrix û represent-
ing the estimated role-permission assignment relation. Note
that, upon convergence, the entries of β are usually already
very close to 0 or 1.

Starting from different random initializations, we run the
algorithm multiple times (e.g., 20) and pick the best solution
according to the objective function (12). We give in Figure 3
the log-likelihood costs and the business information costs
of the best solution in our case-study for different values of
λ. A description of the algorithm in pseudo-code is given in
Algorithm 1.

input : user permission matrix x,
business information S,
parameters λ, T0, α

output: role assignment matrices z,
probabilistic role prototypes β

1: Randomly initialize β, ǫ, and r
2: T = T0

3: while not converged do

4: compute Ri,L according to (10) & (17)
5: ci,L ← exp (−Ri,L/T )
6: γi,L ←

ci,L
∑

L′ ci,L′

7: Solve (21)–(23) for β, ǫ, and r, respectively
8: T ← α · T
9: end while

Algorithm 1: Probabilistic Hybrid Role Mining

6. EXPERIMENTAL RESULTS
In this section, we report on experimental results on a

dataset from an actual enterprise. The dataset contains as-
signments between 22,352 users and 1,786 permissions. Fur-
thermore we had access to two kinds of business information
provided by the company’s Human Resources department:
each user’s organizational unit (OU) and job-code (JC). The
organizational unit groups the users based on their division
and section within the enterprise. The job-code is a num-
ber identifying the kind of employment contract that the
employee has. For example, an employee may be in the
division “customer service, overseas” and have job-code 4,
indicating that her contract is of the type“head of division”.
Each employee has a single job-code and a single organiza-
tional unit. The enterprise considered has 6,630 OUs and
1,030 JCs.

In the following, we will determine the relevance of these
two kinds of business information for role mining using the
measures introduced in Section 4. Afterwards, we report
on experiments that illustrate some of the advantages and
drawbacks of hybrid role-mining.

6.1 Top-Down Information Analysis
As described in Section 5.2, we assume that a user’s orga-

nizational unit and job-code provide information about his
duties and thus his required system permissions. We now
test this assumption and measure the information gain us-
ing the analytic methods described in Section 4.
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Figure 1: Histograms of the mutual information be-
tween permissions and different kinds of business in-
formation: organization units, job-codes, and com-
binations of the two. In the top histogram, the over-
all entropy of the permissions is shown. The bars for
permissions possessed by more than 2% of the users
(in black) are stacked on top of the bars for all the
other permissions (white).

30 40 50 60 70 80 90
0

50

100

150

200

I(perm;JC)/h(perm)) = 1 − h(perm|JC) / h(perm) [%]

nu
m

be
r 

of
 p

er
m

is
si

on
s Distribution over Fraction of Permission Entropy removed by JC

 

 
p(perm) <= 0.02
p(perm)  >  0.02
average = 49.7%

30 40 50 60 70 80 90
0

200

400

600

I(perm;OU)/h(perm)) = 1 − h(perm|OU) / h(perm) [%]

nu
m

be
r 

of
 p

er
m

is
si

on
s Distribution over Fraction of Permission Entropy removed by OU

 

 
p(perm) <= 0.02
p(perm)  >  0.02
average = 87.8%

Figure 2: Distribution of the measure of relevance
(4), the mutual information weighted with inverse
permission entropy.



The top histogram in Figure 1 illustrates the distribu-
tion of the permission entropy h(Xj) for the direct user-
permission assignment. Since the assignment of a permission
is either one or zero, the maximum entropy is one bit, which
corresponds to a permission that is possessed by exactly half
of the users. Permissions possessed by either very few, or
almost all, users have low entropy. For the enterprise under
consideration, all permissions with low entropy belong to
only a few users. To make this distinction clear, in all of the
histograms in Figures 1 and 2, we display counts of permis-
sions shared by less than 2% of the employees in white and
the counts of all other permissions in black. As can be seen
in the top histogram of Figure 1, most of the permissions
have low entropy, but a significant number of permissions
have very high entropy. The lower three histograms show
(in this order) the distribution of the mutual information
between permissions and job-codes, organization unit, and
the combination of the two.

The results are surprising. Since the job-code provides an
abstract high-level job description, one might expect it to be
highly relevant. However, the results show that a user’s job-
code carries only little information about his permissions.
The reason is that, in this enterprise, job-codes are not re-
ally abstract task descriptions. Instead they express other
properties that are interesting for Human Relations, such as
the employee’s salary class, contract duration, seniority, etc.
In contrast, we found that the organization unit is much
more relevant for the user’s permissions. On average, the
organizational unit reduces the entropy by 0.22 bits. More-
over, the entropy of a large number of permissions is even
reduced by 0.9 bits (right peak in second lowest histogram of
Figure 1). Combining the two attributes yields only a slight
gain of 0.01 bits on average (see the lower two histograms
of Figure 1). Hence, we conclude that most of the informa-
tion gained by using job-codes is already contained in the
organizational units.

For the bottom three histograms, note that the bimodal
distribution of the permission-entropy histogram is preserved:
a high peak at very low entropy and a smaller peak at high
entropy. This leads us to a general problem in interpreting
mutual information. In many cases, the mutual information
I(Xj ; S) is low simply because the entropy h(Xj) of the per-
mission j is low. This is the case for permissions that almost
all users have (for instance, reading email) or, as is usually
the case in this data, permissions that very few users have.
In Figure 1, we highlighted such permissions in white. This
illustrates that almost all permissions whose entropy is not
reduced by the knowledge of the given business information
have a very low entropy anyway.

To overcome this problem, we weight I(Xj ; S) by 1/h(Xj)
and obtain the relative mutual information ρj(S) = 1 −
h(Xj |S)/h(Xj) (see Eq. 4) as a relevance measure that in-
dicates the fraction of entropy that is explained by S (see
Fig. 2). This relative representation better reveals the differ-
ence in information content between organization units and
job-codes. Whereas, on average, job codes remove roughly
50% of the uncertainty, knowledge of the organization unit
removes 88%. Admittedly, there is no way to really deter-
mine if knowledge of S would decrease more of the permis-
sion entropy if h(Xj) were higher. Note that for all permis-
sions with high entropy, the mutual information between
business information and permissions is high (compare the
white and black bars in the lower three histograms of Fig. 1).
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Figure 3: Direct comparison of the both objective
functions: log-likelihood R(ll) and pairwise top-down
costs R(S) for various values of the linear weight λ.

Therefore one can reason that knowledge of S might possi-
bly (but not necessarily) also provide significant absolute
information gain on permissions with low-entropy.

Given these findings, we conclude that for the enterprise
considered, the organizational unit provides useful top-down
information. The information provided by job-codes is al-
ready provided by the organizational unit as can be seen
from the very small gain in mutual information when both
are used together (compare the two lower histograms in
Fig. 1). Therefore, for the data at hand, it is reasonable
to ignore the job-codes and just incorporate the organiza-
tion unit into the role-mining process. In the next section,
we will report on several experiments with both types of
business information.

6.2 Role Mining Experiments
In this section, we evaluate our algorithm on real-world

data. As explained in the introduction, the two criteria of a
good hybrid role mining solution are:

1. the role decomposition captures most of the given user-
permission assignment matrix without overfitting, and

2. the user-role assignment is easy to interpret from a
business perspective.

In order to quantitatively assess a given role mining result,
we introduce two measures: the generalization ability and
the interpretability of an RBAC system.

Generalization Ability.
We quantify the ability of a set of roles to generalize to new

users in order to measure how precisely the underlying struc-
ture of a user-permission assignment matrix is captured. To
justify this measure, suppose that a new employee enters the
company. It is clearly undesirable to re-design the set of roles
to accommodate each new employee. Therefore, the existing
set of roles should suffice to endow the new employee with
all the permissions that he needs to accomplish his job. At
the same time, according to the principle of least privilege,



0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20
G

en
er

al
iz

at
io

n 
E

rr
or

 [%
]

λ

 

 

Generalization Error [%]
mean

S
[H(R|S)] [bits]

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

m
ea

n S
[H

(R
|S

)]
 [b

its
]

0 0.02 0.04 0.06 0.08 0.1
0

5

10

15

20

G
en

er
al

iz
at

io
n 

E
rr

or
 [%

]

λ=0.00: 0.166 bits

λ

 

 

Generalization Error [%]
mean

S
[H(R|S)] [bits]

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

m
ea

n S
[H

(R
|S

)]
 [b

its
]

Business Information: Organization Unit Business Information: Job Codes

Figure 4: Generalization error (black circles) and conditional role entropy (blue diamonds) as a function of
the weight of business information λ. Left: hybrid role mining with the organization units of the users. Right:
hybrid role mining with job codes. The axes for the generalization error have same scale.

he should not be given any extra permissions beyond those
he needs for his job (automated role provisioning is itself an
interesting problem, which was recently considered in [16]).

In contrast, a role set that does not generalize to new
users might well replace the existing direct user-permission
assignments, but must be adapted for each new employee.
This is the reason why we did not simply use the devia-
tion ‖x − z ⊗ u‖ to assess how well the structure of the
direct assignment is discovered, even though this is often
advocated in the context of role mining (e.g. [21]). The
deviation measure alone would be appropriate in a lossy-
compression scenario. However, it is inappropriate for access
control data since it also accounts for the coverage of excep-
tional and wrong assignments. Moreover, note that a role
structure that generalizes well substantially eases the prob-
lem of maintaining an RBAC configuration as an enterprise
evolves, provided that the functions in the enterprise do not
dramatically change during this evolution.

We propose the following two-step experiment to measure
the generalization ability of a role mining algorithm:

1. The algorithm gets only a subset of the users-permis-
sion assignment as the input for finding a role decom-
position.

2. For each user from a second, disjoint subset, we take
the business attribute (e.g. his organizational unit)
plus a small fraction of his permissions to identify the
roles that best suit him. From these roles, all other
permissions of the user are predicted.

Since the second (the hidden) set of users comes from the
same enterprise (with the same probability distribution on
the user-permission assignment), a role mining solution that
generalizes well should be able to give a precise prediction.

We implement the experiment as follows. From the en-
tire user-permission assignment and business information,
we randomly choose a set of 3000 users. These are used
to infer a set of roles, using our method described in Sec-
tion 5.3. From the remaining users, we randomly choose a

fraction κ of permissions (e.g. 10%). These permissions, to-
gether with the business information, is then used to choose
the best-matching role set. Formally, we compute the total
risk (12), where, to compute the log-likelihood costs (10), we
only sum over the revealed permissions jκ. Each remaining
user i is then assigned to the set of roles L̂i with minimal
risk, i.e.

L̂i := arg min
L∈L

Ri,L . (24)

The set of roles is then used to predict all permissions of user
i. Let ẑi· be the assignment to the best-matching set of roles.
The estimated permissions of user i are then computed as
x̂i· = ẑi·⊗û, where û is the role-permission relation found in
the role mining step. Finally, the relative Hamming distance
between the estimated and true permissions of user i, ‖x̂i·−
xi·‖/D, i.e. the fraction of wrongly predicted permissions, is
the measure for the generalization error of the inferred roles.

Interpretability.
We formulate the second measure, the business relevance

of the role assignments, by the conditional entropy of the
role set Li of a user i, given his business information si, i.e.
h(Li|si). This captures the requirement that all users with
the same business attribute should obtain the same set of
roles. Thus, the knowledge of the business attribute should,
ideally, determine the roles an employee is assigned to. A
set of roles, however, might be shared by users with differ-
ent business attributes. Note that this measure resembles
the relevance analysis for business information that we in-
troduced in Section 4. There, we required that the given
business information should have a high mutual information
with the permissions (recall I(Xj ; S) = h(Xj)−h(Xj |S)) in
order to agree with the permission structure (and therefore
be useful for role mining). Following the same line of reason-
ing, we require roles to agree with the business information.
Role decompositions that fulfill this requirement are easy to
interpret from the business perspective.
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Results.
We carried out hybrid role mining experiments for two dif-

ferent types of business information. The first experiment
uses the organization units as business information, as sug-
gested by our analysis in Section 6.1. Our second experiment
uses the users’ job-codes. In Figure 4, we plot the two de-
scribed measures for both kinds of business information (OE
left, JC right). For the OE-experiment, we directly compare
these two measures, as displayed in Figure 5.

Figure 4 (left) compares, for different weighting factors λ,
the two measures on the role decompositions that were dis-
covered. The case with λ = 0 corresponds to pure bottom-
up role mining without business information. While the
generalization error slightly increases with λ, the mean con-
ditional role set entropy given the business information de-
creases drastically if λ is increased from zero to a small value.
Hence, the correspondence between the user-role assignment
and the users’ organizational unit substantially improves as
business information is taken into account. Even for small
values of λ, the roles can be better interpreted as business
roles. Since this gain in the business meaning of the user-
role assignment comes at the expense of only a small de-
crease in the generalization ability of the roles, it is a price
worth paying. For λ > 0.04, the entropy h(Li|si) does not
substantially further improve whereas the prediction error
rises. In this interval, the two parts of our objective func-
tion are antagonistic and hence a further increase of λ is not
desirable.

The right part of Figure 4 displays the results obtained
by using the job-codes as business information. In order to
compare the two experiments, Figure 4 shows both results
for axes with the same scale. Note that the two trends of the
conditioned role entropy (blue diamonds) cannot be directly
compared since they are computed with respect to the two
different types of business information. However, one can
reason about the generalization error, which is in both cases
computed with respect to the same user-permission assign-
ment. While for the job-codes (right graph) the general-
ization error converges exponentially to the maximum with

λ, it converges only linearly for the organization units. For
low λ, it is possible to substantially improve on the inter-
pretability of the role decomposition while preserving good
generalization ability.

For hybrid role mining with job-codes this is not possi-
ble. The generalization ability increases immediately for
even small λ. This result confirms the findings of our anal-
ysis of these two types of business information carried out
in Section 6.1. The job-codes do not agree as well with
the direct user-permission assignment as the organizational
units do. Hence, using job-codes, it is only possible to trade
off generalization ability for business interpretability. How-
ever, with organization units, one can improve the business
interpretability without substantially increasing the gener-
alization error.

We directly compare the two quality measures with each
other for different values of λ in Figure 5 for the experi-
ment with the organizational units. The graph shows that
it is possible to improve the results of role mining by us-
ing our unified objective function to incorporate business
information into the role mining process: Changing λ along
the straighter parts of the curve gives improved solutions,
whereas the more curved parts mark the solutions that are
Pareto-optimal with respect to the two measures. In a con-
crete application, the trade-off between generalization and
interpretability must be chosen such that the side conditions
are met. For example, one might require that no more than
some given percentage of permissions of a new employee are
wrongly predicted by the solution. Viewed more generally,
optimizing generalization performance and interpretability
is a multi-objective optimization problem.

7. CONCLUSION
We have divided the hybrid role mining problem into two

parts and provided solutions for them: determining the rel-
evance of business information for role mining, and incorpo-
rating this information into a hybrid role mining algorithm.
We solved the first problem with an entropy-based measure
of relevance and the second by deriving an objective function
that combines a probabilistic model of RBAC with business
information.

To validate our solutions, we carried out experiments us-
ing actual enterprise data. The results show that our ap-
proach finds roles with the following properties: they gener-
alize well, they are easy to interpret (i.e., intuitively under-
standable) from the business perspective, and they have high
predictability in that they approximate closely the given
user-permission assignment. All of these properties are de-
sirable as they have direct, positive consequences for the
administration and maintenance of RBAC-based systems.
Generalization facilitates the maintenance of RBAC since
new users can be easily equipped with needed permissions
without creating new roles. Interpretable roles simplify both
the role’s life-cycle management and adding new users to the
system. Finally, predictability leads to increased security,
since predictive roles implement closely the authorization
policy given by the original user-permission assignment.

As future work, we will investigate an adaptive weighting
scheme of the business information. Namely, not every value
of a business attribute might be equally descriptive for the
permissions received by a user with this attribute. Adaptive
weighting might enable an even more adaptive inclusion of
specific business attributes. Furthermore, we will explore



extensions of our approach for analyzing and merging two
given RBAC systems while preserving their inherent busi-
ness semantic. The quantitative methods of our approach
could also be a starting point to learn about the relationship
between the access control data and the business structure
of both domains.
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